Compact hydraulic power pack type HK 4

Product documentation

Operating pressure p _{max} :	700 bar
Geometric displacement V _{max} :	17.0 cm³/U
Usable volume V _{use} :	11.1 l

D 7600-4 12-2019-1.1

© by HAWE Hydraulik SE.

The reproduction and distribution of this document as well as the use and communication of its contents to others without explicit authorisation is prohibited.

Offenders will be held liable for the payment of damages.

All rights reserved in the event of patent or utility model applications.

Brand names, product names and trademarks are not specifically indicated. In particular with regard to registered and protected names and trademarks, usage is subject to legal provisions.

HAWE Hydraulik respects these legal provisions in all cases.

Printing date / document generated on: 18.12.2019

Contents

1	Overview of compact hydraulic power pack type HK 4 and HKF 4	.4
2	Available versions, main data	
2.1	Motor and container	.5
2.2	Pump	.9
2.2.1	Single-circuit pumps	
2.2.2	Dual-circuit pump with shared pedestal	16
2.2.3	Dual-circuit pumps with separate connection pedestals	
2.2.4	Three-circuit pumps	23
3	Parameters	26
3.1	General	26
3.2	Hydraulic	28
3.3	Electrical	29
4	Dimensions	33
4.1	Mounting hole pattern	
4.2	Basic pump	
4.3	Electric and hydraulic connections	
5	Assembly, operation and maintenance recommendations	40
5.1	Intended use.	
5.2	Assembly information	
5.2.1	Identification	
5.2.2	Setting up and attaching	
5.2.3	Electrical connection and selection of the motor protection circuit-breaker	
5.2.4	Information on ensuring EMC (electromagnetic compatibility)	
5.3	Operating instructions	
5.4	Maintenance information	
6	Other information	48
6.1	Planning information	
6.1.1	Selection advice	

Overview of compact hydraulic power pack type HK 4 and HKF 4

Compact hydraulic power packs are a type of hydraulic power pack. They are characterised by a highly compact design, since the motor shaft of the electric motor also acts as the pump shaft.

The ready-for-connection compact hydraulic power pack type HK and HKF includes an electric motor that runs in oil. The stator is securely attached to the housing (tank). The compact hydraulic power pack is suitable for hydraulic systems with operating mode S2, S3 or S6. A fan, which effectively dissipates the heat from the hydraulic system, is mounted on the housing. In the case of type HKF, the fan is powered by a separate motor independently of the pump motor. In the case of type HK, the fan is securely attached to the motor shaft. An external cooler is not generally required. Type HK and HKF includes a 3-phase motor and has a vertical housing. Single-circuit, dual-circuit or triple-circuit systems can be selected. A radial piston pump, external gear pump or internal gear pump can be used as a hydraulic pump.The compact hydraulic power pack type HK and HKF is suitable for use as a highly compact control system, since connection blocks and valve banks can be directly mounted.

Features and benefits:

 Environmentally friendly thanks to low oil filling volume; low cost of disposal and low hydraulic fluid costs

Intended applications:

• Endurance test bench construction

Compact hydraulic power pack type HK 4 and HKF 4

2.1 Motor and container

Order coding example:

HK 43 HKF 44	9			P1		H 0,7 Z 11,3	- A1/380 - C6	- 3x400/230 V - 3x400/230 V		- G 1/4 x 300	
										Oil drain hose	Table 1f Oil drain hose
								Motor voltage	Table 1	0 Motor voltage	
						Pump ver	rsion Purr	np version, see <u>Ch</u>	apter 2.2	<u>2, "Pump"</u>	
					Add	itional op	otions Tab	ole 1d Additional	options		
				Elect	rical	connecti	on Table :	1e Electrical conn	ection		
			Term	inal b	ox p	osition	Table 1c Te	erminal box positi	on		
		Addi	tiona	l opti	ons	Table 1	d Additional	options			
	Tan	k size	e Ta	able 1	b Tar	ık size					

Basic type and motor power Table 1a Basic type and motor power

Table 1a Basic type and motor power

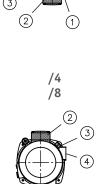
Basic type	Comment	Nominal power (kW)	Rated speed (rpm)
HK 43	with integrated fan	1.5	1395 (50 Hz)
HK 43 V	Basic type HK 4.V is a version with cast stator	1.8	1674 (60 Hz)
HK 44	(see notes <u>Chapter 6.1, "Planning information"</u> "Selection of a compact hydraulic power pack")	2.2	1405 (50 Hz)
HK 44 V		2.6	1700 (60 Hz)
HK 48		3.0	1420 (50 Hz)
HK 48 V		3.6	1704 (60 Hz)
HKF 43	with separately drive fan for temperature-critical applications with approximately 25% higher cooling	1.5	1395 (50 Hz)
HKF 43 V		1.8	1674 (60 Hz)
HKF 44 HKF 44 V	(see <u>Chapter 6.1, "Planning information"</u> "Identifying excess tempera- ture") Basic typeHK 4.V is a version with a cast stator	2.2 2.6	1405 (50 Hz) 1700 (60 Hz)
HKF 48	(see notes <u>Chapter 6.1, "Planning information"</u> "Selection of a compact hydraulic power pack")	3.0	1420 (50 Hz)
HKF 48 V		3.6	1704 (60 Hz)
HKF 43U	Version with frequency converter, see D 7600-4FU	1.5	1395
HKF 44U		2.2	1405
HKF 48U		3.0	1420

1 NOTE

The actual power consumption depends on the load and can be up to 1.8 x nominal power.

Table 1b Tank size

Coding	Note	Fill volume	Usable volume	Basic type		
		V _{fill} (l)	V _{usable} (l)	НК	HKF	
5	Second value for basic type HK 48 and HKF 48	6.8/6.6	2.5/1.8	•	•	
9		10.0/9.0	5.7/5.5	•	•	
2	Only available in combination with basic type HKF 48	15.4	11.1		•	


Table 1c Terminal box position

Coding	Comment	
/1	Series	
/2	90°	offset in anticlockwise direction
/3	180°	
/4	270°	

Alternative assignment for type HKF with terminal box:

/5	Series	
/6	90°	offset in anticlockwise direction
/7	180°	
/8	270°	

/2

/6

4

- 1 Main connection base
- 2 Terminal box
- 3 Air filter
- 4 Second connection base

1 NOTE

- The 4 terminal box positions cover the entire finned tube top, including the oil level gauge, air filter, etc. (see also dimension diagram <u>Chapter 4.2</u>, "<u>Basic pump</u>").
- For version with HARTING connector (Table 1e) and alternative assignment (coding /5.../8), the pump motor and fan motor are connected separately (see <u>Chapter 4.3</u>, "<u>Electric and hydraulic connections</u>"). Use for example in standby mode with continuous fan for additional cooling during motor shutdown.

Table 1d Additional options

Coding	Comment
without designation	Without additional equipment
S	Level switch (N/O contact), usable volume, see Table 1b
D	Level switch (N/C contact), usable volume, see Table 1b
D-D	 Level switch (N/C contact), two switching points, usable volume see Table 1b 1. Switching point 2 litres lower than usable volume as per Table 1b only for type HK 4.9, HKF 4.9 and HKF 482.
A	Level switch (N/C contact), separate electric connection, see <u>Chapter 3.3</u> , " <u>Electrical</u> " and <u>Chapter 4.2</u> , " <u>Basic pump</u> ", only in combination with alternative terminal box assignment according to Table 1c coding /5 /8
т	Temperature switch (switching point 80°C)
T60, T55, T65	Temperature switch (switching point 55°C, 60°C, 65°C)
T55T65	Temperature switch, two switching points (55°C, 65°C)
W W60	Temperature switch (switching point 80°C or 60°C), separate electric connection (also available in the combination AW, AW 60, WW 60, AWW 60), only in combination with alternative terminal box assignment according to Table 1d coding /5 /8
L	 additional drain port at the second connection base G 3/4, see <u>Chapter 4.3, "Electric and hydraulic connections</u>" and <u>Chapter 6.1.1, "Selection advice</u>" ("Additional drain return port") Only single- and dual-circuit pumps, coding H, Z, HH, HZ, ZZ according to <u>Chapter 2.2, "Pump"</u>.
R	Fan cover for additional protection against coarse dirt
М	with G 1 1/4 (BSPP) filling reduction
MA	Like M, additional drain plug G 1/4 (BSPP) in pump base, only for pump combination H, HH, HH-H, Z (size 1 to Z 11.3)
MW	with filling coupling MD-012-2-WR021-19-1

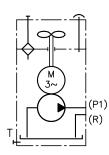
Table 1e Electrical connection

Coding	Comment
No designation	Series (terminal box)
P1, P2	HARTING plug, different connection positions, see <u>Chapter 4.2, "Basic pump "</u> (not for type HKF 45)
E, P1E, P2E	electrical connection with additional suppressor at the terminal box or HARTING connector, see Chapter 3.3, "Electrical"

1 NOTE

For version with HARTING connector (Table 1e) and alternative assignment (coding /5 and /8), the pump motor and fan
motor are connected separately (see <u>Chapter 4.3</u>, "<u>Electric and hydraulic connections</u>"). Use for example in standby mode
with continuous fan for additional cooling during motor shutdown.

Table 1f Oil drain hose


Coding	Description
No designation	Tapped plug G 1/4 (BSPP), in addition: Drain G 3/4 (BSPP), see <u>Chapter 4.2, "Basic pump "</u>
G 1/4 x 300	Oil drain hose approximately 300 mm with ball valve
G 1/4 x 500	Oil drain hose approximately 500 mm with ball valve
G 1/4 W x 300	Oil drain hose approximately 300 mm with bracket and ball valve
G 1/4 W x 500	Oil drain hose approximately 500 mm with bracket and ball valve

2.2 Pump

2.2.1 Single-circuit pumps

Circuit symbol:

Order coding example:

HKF 482 DT/1	- Z 24	- A1/150	- 3x400/230 V 50 Hz
HK 44/1	-H7,2	- C5	- 3x400/230 V 50 Hz

Single-circuit pump with a 3-phase motor Table 2 Single-circuit pump with a 3-phase motor

Table 2 Single-circuit pump (radial piston pump) with a 3-phase motor

1 NOTE

- The delivery flow Q_{max} relates to the rated speed and varies depending on the load (see diagrams <u>Chapter 3.3, "Electrical"</u>).
- Notes on the pressures p_{max}(see <u>Chapter 3.3, "Electrical"</u>, Table 10).
- For pump version with gear pumps **Z** the max. hydraulic work value (pV_q)_{max} is 10% lower.
- The permissible pressures p_{max} relate to a version with a 3x400/230 V 50 Hz or 3x460 V 60 Hz motor.
- Be aware of different motor power ratings and resulting permissible maximum pressures p_{max} = (pV_g)_{max}/V_g. at other nominal voltages and power frequencies, (pV_g)_{max} (see <u>Chapter 3.3, "Electrical"</u>, Table 10)"

Radial piston pump H

	Delivery flow coding			H 0.9	H 1.25	H1.4	H1.5	H1.8	H 2.08
	Displacement volume V _q (cm ³	/rev)		0.64	0.88	1.07	1.15	1.29	1.46
	Piston diameter (mm) Number of pump elements			6 3	7 3	6 5	8 3	6 6	7 5
HK 43	Permissible pressure p _{max}	(bar)		700	700	700	700	700	620
HKF 43	Continuous operation S1 p1	(bar)		680	500	410	390	340	300
	Delivery flow Q _{max}	(lpm)	50 Hz	0.90	1.22	1.50	1.60	1.80	2.04
			60 Hz	1.08	1.47	1.79	1.91	2.15	2.44
HK 44	Permissible pressure p _{max}	(bar)		700	700	700	700	700	700
HKF 44	Continuous operation S1 p1	(bar)		700	700	700	700	690	610
	Delivery flow Q _{max}	(lpm)	50 Hz	0.89	1.21	1.48	1.58	1.77	2.01
			60 Hz	1.06	1.45	1.77	1.89	2.13	2.41
HK 48	Permissible pressure p _{max}	(bar)		700	700	700	700	700	700
HKF 48	Continuous operation S1 p1	(bar)		700	700	700	700	700	700
	Delivery flow Q_{max}	(lpm)	50 Hz	0.92	1.25	1.53	1.63	1.83	2.08
			60 Hz	1.10	1.50	1.83	1.95	2.20	2.49

	Delivery flow coding			H 2.45	H 2.5	H 2.6	H 3.2	H3.6	H 4.2
	Displacement volume Vg (cm ³	/rev)		1.75	1.79	1.91	2.29	2.58	2.981
	Piston diameter (mm) Number of pump elements			7 6	10 3	8 5	8 6	12 3	10 5
HK 43	Permissible pressure p _{max}	(bar)		510	500	470	390	350	300
HKF 43	Continuous operation S1 p1	(bar)		250	250	230	190	170	150
	Delivery flow Q _{max}	(lpm)	50 Hz	2.45	2.50	2.66	3.20	3.60	1.16
			60 Hz	2.93	2.99	3.19	3.83	4.31	4.98
HK 44	Permissible pressure p _{max}	(bar)		700	560	650	550	390	420
HKF 44	Continuous operation S1 p_1	(bar)		510	500	470	390	350	300
	Delivery flow Q_{max}	(lpm)	50 Hz	5.41	2.46	2.63	3.15	3.55	4.10
			60 Hz	2.90	2.95	3.15	3.78	4.25	4.92
HK 48	Permissible pressure p _{max}	(bar)		700	560	700	700	390	560
HKF 48	Continuous operation S1 p1	(bar)		670	560	620	520	390	400
	Delivery flow Q _{max}	(lpm)	50 Hz	2.49	2.54	2.71	3.25	3.66	4.24
			60 Hz	2.99	3.05	3.25	3.91	4.39	5.09

Radial piston pump H

	Delivery flow coding			H 4.3	H 5.0	H 5.1	H 5.6	H 6.5	H 6.0
	Displacement volume V_g (cm ³ /	/rev)		3.03	3.58	3.51	4.03	4.58	4.30
	Piston diameter (mm) Number of pump elements			13 3	10 6	14 3	15 3	16 3	12 5
HK 43	Permissible pressure p _{max}	(bar)		300	250	260	220	200	210
HKF 43	Continuous operation S1 p1	(bar)		150	120	130	110	100	100
	Delivery flow Q _{max}	(lpm)	50 Hz	4.22	5.00	4.90	5.62	6.39	6.00
			60 Hz	5.05	5.98	5.86	6.73	7.66	7.18
HK 44	Permissible pressure p _{max}	(bar)		330	350	290	250	220	290
HKF 44	Continuous operation S1 p1	(bar)		300	250	260	220	200	210
	Delivery flow Q _{max}	(lpm)	50 Hz	4.16	4.92	4.83	5.54	6.30	5.91
			60 Hz	4.99	5.91	5.79	6.65	7.56	7.09
HK 48	Permissible pressure p _{max}	(bar)		330	560	290	250	220	390
HKF 48	Continuous operation S1 p_1	(bar)		330	330	290	250	220	280
	Delivery flow Q _{max}	(lpm)	50 Hz	4.30	5.09	4.98	5.27	6.51	6.10
			60 Hz	5.16	6.10	5.98	6.87	7.81	7.32

	Delivery flow coding			Η 7.0	H 7.2	H8.3	H 8.6	H 9.5	H 9.9
	Displacement volume V_g (cm ³)	/rev)		5.04	5.16	5.8	6.0	6.7	7.0
	Piston diameter (mm) Number of pump elements			13 5	12 6	14 5	13 6	15 5	14 6
HK 43	Permissible pressure p _{max}	(bar)		180	170	150	150	130	130
HKF 43	Continuous operation S1 p1	(bar)		90	90	80	70	70	60
	Delivery flow Q _{max}	(lpm)	50 Hz	7.04	7.19	8.16	8.44	9.37	9.79
			60 Hz	8.42	8.61	9.77	10.11	11.21	11.72
HK 44	Permissible pressure p _{max}	(bar)		250	240	210	210	190	180
HKF 44	Continuous operation S1 p1	(bar)		180	170	150	150	130	130
	Delivery flow Q _{max}	(lpm)	50 Hz	6.94	7.09	8.04	8.32	9.23	9.65
			60 Hz	8.32	8.51	9.65	9.99	11.08	11.58
HK 48	Permissible pressure p _{max}	(bar)		330	390	290	330	250	290
HKF 48	Continuous operation S1 p1	(bar)		230	230	200	200	180	170
	Delivery flow Q _{max}	(lpm)	50 Hz	7.16	7.32	8.31	8.59	9.54	9.97
			60 Hz	8.59	8.79	9.97	10.31	11.44	11.96

0.06 9.17 15 16 6 6
6 6
10 100
.10 100
50 50
12.79
3.46 15.31
.60 140
.10 100
12.61
3.30 15.13
220
.50 130
13.02
3.73 15.62

to Table 2 Single-circuit pump (gear pump) with a 3-phase motor

1 NOTE

For this pump version, the max. hydraulic work value $(pV_g)_{\mbox{\tiny max}}$ is 10% lower.

Gear pump Z

	Delivery flow coding			Z 2	Z 2.7	Z 3.5	Z4.5	Z 5.2	Z 6.5
	Displacement volume V_g (cm ³ /	′rev)		1.6	2.15	2.65	3.35	4.25	4.5
	Size			1	1	1	1	1	2
HK 43	Permissible pressure p _{max}	(bar)		170	170	170	170	170	170
HKF 43	Continuous operation S1 p_1	(bar)		170	170	170	140	110	100
	Delivery flow Q_{max}	(lpm)	50 Hz	2.2	3.0	3.7	4.7	5.9	6.3
			60 Hz	2.7	3.6	4.4	5.6	7.1	7.5
HK 44	Permissible pressure p _{max}	(bar)		170	170	170	170	170	170
HKF 44	Continuous operation S1 p_1	(bar)		170	170	170	170	170	170
	Delivery flow Q _{max}	(lpm)	50 Hz	2.2	3.0	3.7	4.7	6.0	6.3
			60 Hz	2.7	3.7	4.5	5.7	7.2	7.7
HK 48	Permissible pressure p _{max}	(bar)		170	170	170	170	170	170
HKF 48	Continuous operation S1 p1	(bar)		170	170	170	170	170	170
	Delivery flow Q_{max}	(lpm)	50 Hz	2.3	3.1	3.8	4.8	6.0	6.4
			60 Hz	2.7	3.7	4.5	5.7	7.2	7.7

Gear pump Z

	Delivery flavy and in a			76.0	700	7.0	700	7 4 4 0	7 4 0 0
	Delivery flow coding			Z6.9	Z 8.8	Z 9	Z 9.8	Z 11.3	Z 12.3
	Displacement volume V_g (cm ³)	/rev)		5.35	6.65	6.0	7.1	8.5	8.5
	Size			1	1	2	1	1	2
HK 43	Permissible pressure p _{max}	(bar)		170	150	150	140	110	110
HKF 43	Continuous operation S1 p1	(bar)		90	70	70	70	60	50
	Delivery flow Q _{max}	(lpm)	50 Hz	7.5	9.3	8.4	9.9	11.9	11.9
			60 Hz	9.0	11.1	10.0	11.9	14.2	14.2
HK 44	Permissible pressure p _{max}	(bar)		170	170	170	170	160	150
HKF 44	Continuous operation S1 p_1	(bar)		170	140	150	140	110	110
	Delivery flow Q_{max}	(lpm)	50 Hz	7.5	9.3	2.7	2.7	11.9	11.9
			60 Hz	9.1	11.3	2.7	2.7	14.5	14.5
HK 48	Permissible pressure p _{max}	(bar)		170	170	170	170	170	170
HKF 48	Continuous operation S1 p1	(bar)		170	170	170	170	150	140
	Delivery flow Q _{max}	(lpm)	50 Hz	7.6	9.4	2.7	2.7	12.1	12.1
			60 Hz	9.1	11.3	2.7	2.7	14.5	14.5

Gear pump Z

	Delivery flow coding			Z 14.4	Z 16	Z 21	Z 24
	Displacement volume V_g (cm ³	/rev)		10.65	11.0	14.5	17.0
	Size			1	2	2	2
HK 43	Permissible pressure p _{max}	(bar)		90	80	60	50
HKF 43	Continuous operation S1 p_1	(bar)		40	40	30	30
	Delivery flow Q _{max}	(lpm)	50 Hz	14.9	15.3	20.2	23.7
			60 Hz	17.8	18.4	24.3	28.5
HK 44	Permissible pressure p _{max}	(bar)		130	110	90	70
HKF 44	Continuous operation S1 p_1	(bar)		90	80	60	50
	Delivery flow Q _{max}	(lpm)	50 Hz	15.0	15.5	20.4	23.9
			60 Hz	18.1	18.7	24.7	28.9
HK 48	Permissible pressure p _{max}	(bar)		170	170	170	150
HKF 48	Continuous operation S1 p_1	(bar)		120	110	80	70
	Delivery flow Q_{max}	(lpm)	50 Hz	15.1	15.6	20.6	24.1
			60 Hz	18.1	18.7	24.7	29.0

to Table 2 Single-circuit pump (internal gear pump) with 3-phase motor (only type HKF)

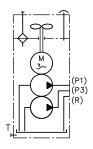
1 NOTE

For this pump version, the max. hydraulic work value $(pV_g)_{\mbox{\tiny max}}$ is 10% lower.

Internal gear pump IZ

	Delivery flow coding			IZ 7.5	IZ 9.1	IZ 11.9	IZ 16.2	IZ 19.2	IZ 22.9
	Displacement volume V_g (cm ³	³/rev)		5.4	6.4	7.9	10.9	13.3	15.8
	Size			2	2	2	2	2	2
HK 44	Permissible pressure p_{max}	(bar)		230	200	160	110	90	80
HKF 44	Continuous operation S1 p_1	(bar)		170	140	110	80	70	60
	Delivery flow Q _{max}	(lpm)	50 Hz	7.4	8.8	10.9	15.0	18.3	21.7
			60 Hz	8.9	10.6	13.0	18.0	21.9	26.1
HK 48	Permissible pressure p _{max}	(bar)		250	250	250	240	200	160
HKF 48	Continuous operation S1 p1	(bar)		220	180	150	110	90	70
	Delivery flow Q _{max}	(lpm)	50 Hz	7.7	9.1	11.2	15.5	18.9	22.4
			60 Hz	9.2	10.9	13.5	18.6	22.7	26.9

2.2.2 Dual-circuit pump with shared pedestal


a) Radial piston pump version - radial piston pump HH and radial piston pump - gear pump HZ

Order coding example:

HK HK	44 449	ST/1 DT/1 P	- H - H	H Z	3,6 1,5	/ 6,5 / 8,8	- SS - A1/250 - AN21F2C50 - C315	- 3x400/230 V 50 Hz - 3x400/230 V 50 Hz	
						Pressur	e connection P3 Tab	le 4 Pressure connection I	P3
					Press	ure conr	nection P1 Table 3 Pr	essure connection P1	
				Pres	ssure o	onnecti	on P3 Table 4 Pressur	re connection P3: Radial p	piston pump H or gear pump Z
			Press	ure o	connec	tion P1	Table 3 Pressure conr	nection P1: Radial piston	pump H

Combination options

Coding	P1	Р3	Examples
нн	3 pump elements	3 pump elements	HH 0.9/0.9
ΗZ	3 pump elements 3 pump elements 5 pump elements 5 pump elements 6 pump elements 6 pump elements	Gear pump size 1 Gear pump size 2 Gear pump size 1 Gear pump size 2 Gear pump size 1 Gear pump size 2	HZ 1.25/11.3 HZ 0.9/16 HZ 2.08/9.8 HZ 1.4/8.8 HZ 1.8/6.9 HZ 5.0/21

1 NOTE

For this pump version, the max. hydraulic work value $(pV_g)_{\mbox{\scriptsize max}}$ is 10% lower.

Table 3 Pressure connection P1

1 NOTE

- The delivery flow Q_{max} relates to the rated speed and varies depending on the load (see diagrams <u>Chapter 3.3, "Electrical"</u>).
- Notes on the pressures p_{max}(see <u>Chapter 3.3, "Electrical"</u>, Table 10).
- For this pump version, the max. hydraulic work value $(pVg)_{max}$ is 10% lower.

Delivery flow coding	H 0.9	H 1.25	H 1.4	H 1.5	H 1.8	H 2.08
Displacement volume V_g (cm ³ /rev)	0.64	0.88	1.07	1.15	1.29	1.46
Piston diameter (mm) Number of pump elements	6 3	7 3	6 5	8 3	6 6	7 5
Delivery flow coding	H 2.45	H 2.5	H 2.6	H 3.2	H 3.6	H 4.2
Displacement volume V_g (cm ³ /rev)	1.75	1.79	1.91	2.29	2.58	2.98
Piston diameter (mm) Number of pump elements	7 6	10 3	8 5	8 6	12 3	10 5
Delivery flow coding	H 4.3	H 5.0	H 5.1	H 5.6	H 6.5	6.0
Displacement volume V_g (cm ³ /rev)	3.03	3.58	3.51	4.03	4.58	4.30
Piston diameter (mm) Number of pump elements	13 3	10 6	14 3	15 3	16 3	12 5
Delivery flow coding	H 7.0	H 7.2	H 8.3	H 8.6	H 9.5	H 9.9
Displacement volume V_g (cm ³ /rev)	5.04	5.16	5.85	6.05	6.72	7.02
Piston diameter (mm) Number of pump elements	13 5	12 6	14 5	13 6	15 5	14 6
Delivery flow coding	H 10.9	H 11.5	H 13.1			
Displacement volume Vg (cm³/rev)	7.64	8.06	9.17			
Piston diameter (mm) Number of pump elements	16 5	15 6	16 6			

Table 4 Pressure connection P3

1 NOTE

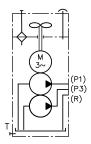
- The delivery flow Q_{max} relates to the rated speed and varies depending on the load (see diagrams <u>Chapter 3.3, "Electrical"</u>).
- Notes on the pressures p_{max}(see <u>Chapter 3.3, "Electrical"</u>, Table 10).
- For this pump version, the max. hydraulic work value $(pVg)_{max}$ is 10% lower.

Radial piston pump H

Delivery flow coding	H 0.9	H 1.25	H 1.5	H 2.5	H 3.6	H 4.3
Displacement volume V_g (cm ³ /rev)	0.64	0.88	1.15	1.79	2.58	3.03
Piston diameter (mm) Number of pump elements	6 3	7 3	8 3	10 3	12 3	13 3
Delivery flow coding	H 5.1	H 5.6	H 6.5			
Displacement volume V_g (cm ³ /rev)	3.51	4.03	4.58			
Piston diameter (mm) Number of pump elements	14 3	15 3	16 3			

Gear pump Z

Delivery flow coding	Z 2	Z 2.7	Z 3.5	Z 4.5	Z 5.2	Z 6.5
Displacement volume Vg (cm³/rev)	1.6	2.15	2.65	3.35	4.25	4.5
Size	1	1	1	1	1	2
Delivery flow coding	Z 6.9	Z 8.8	Z 9	Z 9.8	Z 11.3	Z 12.3
Displacement volume V_g (cm ³ /rev)	5.35	6.65	6.0	7.1	8.5	8.5
Size	1	1	2	1	1	2
Delivery flow coding	Z 14.4	Z 16	Z 21			
Displacement volume V_g (cm ³ /rev)	10.65	11.0	14.5			
Size	1	2	2			


b) Version of gear pump – gear pump ZZ

Order coding example:

ΗК	489	DT/1 M	- Z	Ζ	2,7	/ 9,8	- SS - A1F3/120	- 3x400/230 V 50 Hz	
						Pressur	e connection P3	Table 5 Pressure connect	on P3
					Pressu	ure conn	ection P1 Table	5 Pressure connection P1	
Pressure connection P3 Table 5 Pressure connection P3: Gear pump Z									
			Press	ure	conneo	ction P1	Table 5 Pressure	e connection P1: Gear pum	p Z

Available combinations:

ZZ 2.7/8.8 ZZ 4.5/4.5 ZZ 6.9/11.3	
ZZ 2.7/9.8 ZZ 4.5/9.8 ZZ 8.8/8.8	
ZZ 2.7/11.3 ZZ 4.5/11.3 ZZ 11.3/11.3	

Table 5 Pressure connection P1 and P3

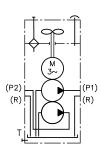
1 NOTE

- The delivery flow Q_{max} relates to the rated speed and varies depending on the load (see diagrams <u>Chapter 3.3, "Electrical"</u>).
- Notes on the pressures p_{max}(see <u>Chapter 3.3, "Electrical</u>", Table 10).
- For pump version with gear pumps **Z** the max. hydraulic work value (pV_q)_{max} is 10% lower.
- The permissible pressures p_{max} relate to a version with a 3x400/230 V 50 Hz or 3x460 V 60 Hz motor.
- Be aware of different motor power ratings and resulting permissible maximum pressures p_{max} = (pV_g)_{max}/V_g. at other nominal voltages and power frequencies, (pV_g)_{max} (see <u>Chapter 3.3</u>, "Electrical", Table 10)"

Gear pump Z

Delivery flow coding	Z 2.7	Z 3.5	Z 4.5	Z 5.2	Z 6.9	Z 8.8
Displacement volume V_g (cm ³ /rev)	2.15	2.65	3.35	4.25	5.35	6.65
Size	1	1	1	1	1	1
Delivery flow coding	Z 9.8	Z 11.3				
Displacement volume V_g (cm ³ /rev)	7.1	8.5				
Size	1	1				

2.2.3 Dual-circuit pumps with separate connection pedestals


Order coding example:

HKF	449	DT/1	- Z 4,5	- Z 4,5	- AL 21 D 10 - E/70/90 - AL 21 D 10 - E/90/100	- 3x400/230 V 50 Hz
ΗК	43	DT/1M	- H 0,9	- H 1,5	- A1/150 - AS1 F1/260	- 3x400/230 V 50 Hz
HKF	449	DT	- H 0,9	- Z 16	- A1/160 - AL 21 F3 VM - E/85/100 - 7/70	- 3x400/230 V 50 Hz

Pressure connection P2Table 7 Pressure connection P2: Radial piston pump H or gear pump ZPressure connection P1Table 6 Pressure connection P1: Radial piston pump H or gear pump Z

Combination options

Coding	P1	P2	Examples
H - H	3 pump elements	3 pump elements	H 0.9 - H 0.9
H - Z	3 pump elements 3 pump elements 5 pump elements 5 pump elements 6 pump elements 6 pump elements	Gear pump size 1 Gear pump size 2 Gear pump size 1 Gear pump size 2 Gear pump size 1 Gear pump size 2	H 1.25 - Z 11.3 H 0.9 - Z 16 H 2.08 - Z 9.8 H 1.4 - Z 8.8 H 1.8 - Z 6.9 H 3.2 - Z 21
Z - Z	Gear pump size 1	Gear pump size 1	Z 4.5 - Z 4.5

For pump version H - H, H - Z or Z - Z:

1 NOTE

For this pump version, the max. hydraulic work value $(pV_g)_{\text{max}}$ is 10% lower.

Table 6 Pressure connection P1

1 NOTE

- The delivery flow Q_{max} relates to the rated speed and varies depending on the load (see diagrams <u>Chapter 3.3, "Electrical"</u>).
- Notes on the pressures p_{max}(see <u>Chapter 3.3, "Electrical"</u>, Table 10).
- For pump version with gear pumps **Z** the max. hydraulic work value (pV_g)_{max} is 10% lower.
- The permissible pressures p_{max} relate to a version with a 3x400/230 V 50 Hz or 3x460 V 60 Hz motor.
- Be aware of different motor power ratings and resulting permissible maximum pressures p_{max} = (pV_g)_{max}/V_g. at other nominal voltages and power frequencies, (pV_g)_{max} (see <u>Chapter 3.3</u>, "Electrical", Table 10)"

Radial piston pump H

Delivery flow coding	H 0.9	H 1.25	H 1.4	H 1.5	H 1.8	H 2.08
Displacement volume V_g (cm ³ /rev)	0.64	0.88	1.07	1.15	1.29	1.46
Piston diameter (mm) Number of pump elements	6 3	7 3	6 5	8 3	6 6	7 5
Delivery flow coding	H 2.45	H 2.5	H 2.6	H 3.2	H 3.6	H 4.2
Displacement volume V_g (cm ³ /rev)	1.75	1.79	1.91	2.29	2.58	2.98
Piston diameter (mm) Number of pump elements	7 6	10 3	8 5	8 6	12 3	10 5
Delivery flow coding	H 4.3	H 5.0	H 5.1	H 5.6	H 6.5	6.0
Displacement volume V_g (cm ³ /rev)	3.03	3.58	3.51	4.03	4.58	4.30
Piston diameter (mm) Number of pump elements	13 3	10 6	14 3	15 3	16 3	12 5
Delivery flow coding	H 7.0	H 7.2	H 8.3	H 8.6	H 9.5	H 9.9
Displacement volume V _g (cm³/rev)	5.04	5.16	5.85	6.05	6.72	7.02
Piston diameter (mm) Number of pump elements	13 5	12 6	14 5	13 6	15 5	14 6
Delivery flow coding	H 10.9	H 11.5	H 13.1			
Displacement volume V_g (cm ³ /rev)	7.64	8.06	9.17			
Piston diameter (mm) Number of pump elements	16 5	15 6	16 6			

Gear pump Z

Delivery flow coding	Z 2.7	Z 4.5	Z 5.2	Z 8.8	Z 11.3
Displacement volume V_g (cm ³ /rev)	2.15	3.35	4.25	6.65	8.5
Size	1	1	1	1	1

Available combinations:

Z 2.7 - Z 5.2 Z 4.5 - Z 4.5 Z 8.8 - Z 8.8 Z 11.3 - Z
--

Table 7 Pressure connection P2

1 NOTE

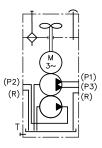
- The delivery flow Q_{max} relates to the rated speed and varies depending on the load (see diagrams <u>Chapter 3.3, "Electrical"</u>).
- Notes on the pressures p_{max}(see <u>Chapter 3.3, "Electrical"</u>, Table 10).
- For pump version with gear pumps **Z** the max. hydraulic work value (pV_g)_{max} is 10% lower.
- The permissible pressures p_{max} relate to a version with a 3x400/230 V 50 Hz or 3x460 V 60 Hz motor.
- Be aware of different motor power ratings and resulting permissible maximum pressures p_{max} = (pV_g)_{max}/V_g. at other nominal voltages and power frequencies, (pV_g)_{max} (see <u>Chapter 3.3</u>, "Electrical", Table 10)"

Radial piston pump H

Delivery flow coding	H 0.9	H 1.25	H 1.5	H 2.5	H 3.6	H 4.3
Displacement volume $V_g \ (cm^3/rev)$	0.64	0.88	1.15	1.79	2.58	3.03
Piston diameter (mm) Number of pump elements	6 3	7 3	8 3	10 3	12 3	13 3
Delivery flow coding	H 5.1	H 6.5				
Displacement volume $V_g \ (cm^3/rev)$	3.51	4.58				
Piston diameter (mm) Number of pump elements	14 3	16 3				

Gear pump Z

Delivery flow coding	Z 2	Z 2.7	Z 3.5	Z 4.5	Z 5.2	Z 6.5
Displacement volume V_g (cm ³ /rev)	1.6	2.15	2.65	3.35	4.25	4.5
Size	1	1	1	1	1	2
Delivery flow coding	Z 6.9	Z 8.8	Z 9	Z 9.8	Z 11.3	Z 12.3
Displacement volume V_g (cm ³ /rev)	5.35	6.65	6.0	7.1	8.5	8.5
Size	1	1	2	1	1	2
Delivery flow coding	Z 14.4	Z 16	Z 21	Z 24		
Displacement volume V_g (cm ³ /rev)	10.65	11.0	14.5	17.0		
Size	1	2	2	2		


2.2.4 Three-circuit pumps

Order coding example:

ΗK	43	ST/1	- H	Η	1,6	/1,6	- H 1,6	- C30 - A1 F1/450 - A1 F1/450	- 3x400/230 V 50 Hz
ΗK	449	DT/1	- H	Н	3,3	/0,83	- Z 9,8	- SS A1/150 - G24 - A1 F2/100	- 3x400/230 V 50 Hz
HKF	489	DT/1	- H	H	0,9	/0,9	- Z 8,8	- U4 - AP1 F3-P4-42/290 - G24 - AL 21 R F3 D/160/180 - 23	- 3x400/230 V 50 Hz
			Press	Pres	sure o	ure connectio	e connection ection P1 on P3 Ta	connection P2 Table 9 Pressure of gear pump Z on P3 Table 8 Pressure connectio Table 8 Pressure connection P1 able 8 Pressure connection P3: Radia Pressure connection P1: Radial pisto	al piston pump H

Combination options

Coding	P1	Р3	P2	Examples
HH - H	2 pump elements	2 pump elements	2 pump elements	HH 1.6/1.6 - H 2.8
HH - Z	2 pump elements 3 pump elements 3 pump elements	2 pump elements 3 pump elements 3 pump elements	Gear pump size 1 Gear pump size 1 Gear pump size 2	HH 1.6/1.6 - Z 8.8 HH 4.3/4.3 - Z 11.3 HH 6.5/3.6 - Z 16

1 NOTE

For this pump version, the max. hydraulic work value $(pV_g)_{\text{max}}$ is 10% lower.

Table 8 Pressure connection P1 and P3

1 NOTE

- The delivery flow Q_{max} relates to the rated speed and varies depending on the load (see diagrams <u>Chapter 3.3, "Electrical"</u>).
- Notes on the pressures p_{max}(see <u>Chapter 3.3, "Electrical"</u>, Table 10).
- For pump version with gear pumps **Z** the max. hydraulic work value (pV_g)_{max} is 10% lower.
- The permissible pressures p_{max} relate to a version with a 3x400/230 V 50 Hz or 3x460 V 60 Hz motor.
- Be aware of different motor power ratings and resulting permissible maximum pressures p_{max} = (pV_g)_{max}/V_g. at other nominal voltages and power frequencies, (pV_g)_{max} (see <u>Chapter 3.3</u>, "Electrical", Table 10)"

Delivery flow coding	H 0.6	H 0.83	H 0.9	H 1.0	H 1.25	H 1.5
Displacement volume Vg (cm³/rev)	0.43	0.58	0.64	0.76	0.88	1.15
Piston diameter (mm) Number of pump elements	6 2	7 2	6 3	8 2	7 3	8 3
Delivery flow coding	H 1.6	H 2.4	H 2.5	H 2.8	H 3.3	H 3.6
Displacement volume Vg (cm³/rev)	1.19	1.72	1.79	2.02	2.34	2.58
Piston diameter (mm) Number of pump elements	10 2	12 2	10 3	13 2	14 2	12 3
Delivery flow coding	H 3.8	H 4.3	H 5.0	H 5.1	H 5.6	H 6.5
Displacement volume Vg (cm³/rev)	2.69	3.03	3.06	3.51	4.03	4.58
Piston diameter (mm) Number of pump elements	15 2	13 3	16 2	14 3	15 3	16 3

Table 9 Pressure connection P2

1 NOTE

- The delivery flow Q_{max} relates to the rated speed and varies depending on the load (see diagrams <u>Chapter 3.3, "Electrical"</u>).
- Notes on the pressures p_{max}(see <u>Chapter 3.3, "Electrical"</u>, Table 10).
- For pump version with gear pumps **Z** the max. hydraulic work value (pV_g)_{max} is 10% lower.
- The permissible pressures p_{max} relate to a version with a 3x400/230 V 50 Hz or 3x460 V 60 Hz motor.
- Be aware of different motor power ratings and resulting permissible maximum pressures p_{max} = (pV_g)_{max}/V_g. at other nominal voltages and power frequencies, (pV_g)_{max} (see <u>Chapter 3.3</u>, "Electrical", Table 10)"

Radial piston pump H

Delivery flow coding	H 0.9	H 1.25	H 1.5	H 2.5	H 3.6	H 4.3
Displacement volume V_g (cm ³ /rev)	0.64	0.88	1.15	1.79	2.58	3.03
Piston diameter (mm) Number of pump elements	6 3	7 3	8 3	10 3	12 3	13 3
Delivery flow coding	H 5.1	H 5.6	H 6.5			
Displacement volume V _g (cm³/rev)	3.51	4.03	4.58			
Piston diameter (mm) Number of pump elements	14 3	15 3	16 3			

Gear pump Z

Delivery flow coding	Z 2	Z 2.7	Z 3.5	Z 4.5	Z 5.2	Z 6.9
Displacement volume V_g (cm ³ /rev)	1.6	2.15	2.65	3.35	4.25	5.35
Size	1	1	1	1	1	1
Delivery flow coding	Z 8.8	Z 9.8	Z 11.3	Z 12.3	Z 14.4	Z 16
Displacement volume V_g (cm ³ /rev)	6.65	7.1	8.5	8.5	10.65	11.0
Size	1	1	1	2	1	2

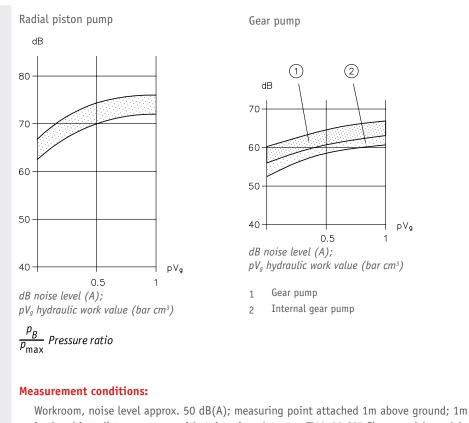
Parameters

3.1 General

3

General information

Conformity	 Declaration of incorporation according to Machinery Directive 2006/42/EC Declaration of conformity according to Low-Voltage Directive 2006/95/EC UL conformity of the stators - UL reference E 216350 UL conformity of the external fans - UL reference E 93656 				
Designation	Hydraulic power pack				
Design	Valve-controlled radial piston pump, gear pump or internal gear pump				
Model	Compact hydraulic power pack (closed unit with a pump, electric drive and tank)				
Material	Steel; nitrided valve housing, electrogalvanised sealing nuts and connection block, hardened and ground functional inner parts Housing: Aluminium				
Installation position	Vertical				
rotation direction	Radial piston pump – any Gear pump – anticlockwise Internal gear pump – anticlockwise Type HKF- anticlockwise (If there is no delivery flow in the 3-phase version, replace two of the three main conductors.)				
Speed range	Radial piston pump H: 200 3500 rpm Gear pump 550 3500 rpm Z 1.1 Z 6.9: 650 3500 rpm Z 8.8, Z 9.8, Z 11.3, Z 14.4: 650 3000 rpm Z 6.5, Z 9, Z 12.3 Z 24: 650 3500 rpm Internal gear pump 200 3600 rpm				
Line connection	only via the screwed-on connection blocks, see selection table in <u>Chapter 6.1, "Planning</u> <u>information"</u> ("Selection of the connection blocks") Basic pump: Connection drilling pattern, see <u>Chapter 4.3, "Electric and hydraulic connections"</u>				
Ambient temperature	-40 +60°C				


(without oil filling)

Туре	H HH H - H HH - H	Z IZ	H - Z HH - Z	ZZ Z - Z
HK 4.5, HKF 4.5	29.8 kg	26.3 kg	27.6 kg	29.3 kg
HK 4.9, HKF 4.9	34.4 kg	30.9 kg	33.9 kg	32.2 kg
HK 482, HKF 482	39.2 kg	36.1 kg	40.1 kg	37.3 kg

For weights of the required connection blocks and valve banks, see corresponding publications, see <u>Chapter 6.1, "Planning information"</u> ("Selection of the connection blocks") and ("Selection of the directional valve banks")

Characteristics

Running noises

Workroom, noise level approx. 50 dB(A); measuring point attached 1m above ground; 1m in the object distance, pump with 4 damping elements Ø40x30 (65 Shore model, model damping element no. 20291/V).

Viscosity during measurements approx. 60 mm²/s

Measuring devices:

Precision noise level meter IEC 651 class I

1 NOTE

Pumps with smaller delivery flows usually tend toward the lower limit, pumps with larger delivery flows tend toward the upper limit. The noise level of dual-circuit pumps, based on the total flow rate, is approximately in the same range as that of a radial piston single-circuit pump of the same size.

3.2 Hydraulic

Pressure	Pressure side (connection P): depending on version and delivery flow, see <u>Chapter 2.2,</u> <u>"Pump"</u> Suction side (container interior): ambient air pressure. Not suitable for charging.
Start against pressure	The version with 3-phase motor can start against the pressure $p_{\mbox{\tiny Max}}$
Hydraulic fluid	Hydraulic oil: according to DIN 51 524 Part 1 to 3; ISO VG 10 to 68 according to DIN 51 519 Viscosity range: min. approx. 4; max. approx. 800 mm ² /s Optimal operating range: approx. 10 500 mm ² /s Also suitable for biologically degradable pressure fluids type HEPG (polyalkylene glycol) and HEES (synthetic ester) at operating temperatures up to approx. +70°C.
Cleanliness level	ISO 4406 21/18/1519/17/13
Temperatures	Ambient: approx40 to +60°C, oil: -25 to +80°C, pay attention to the viscosity range! Start temperature: down to -40°C is permissible (observe start-viscosity!), as long as the steady-state temperature is at least 20K higher for subsequent operation. Biologically degradable pressure fluids: note manufacturer specifications. With consideration for the seal compatibility, not above +70°C.

3.3 Electrical

Data applies to radial piston and gear pumps

The drive motor forms a closed, inseparable unit with the pump, see description <u>Chapter 1, "Overview of compact hydraulic power pack</u> type HK 4 and HKF 4".

Port	 For version with HARTING connector, housing with female insert HARTING HAN 1 CE or equivalent, cable cross section 1.5 mm² For version with terminal box, the cable fitting M20 x 1.5 must be provided by the user 					
Protection class	IP 65 according to IEC 60529 NOTE The breather filter must be safeguarded against moisture penetration.					
Protection class	VDE 0100 Protection class 1					
Insulation	 designed in accordance with EN 60 664-1 For 4-wire AC voltage systems L1-L2-L3-PE (3-phase systems) with an earthed neutral point up to 500 V AC nominal phase voltage phase-phase For 3-wire AC voltage systems L1-L2-L3 (3-phase systems) without an earthed neutral point up to a nominal phase voltage of 300 V AC phase-phase for a single-phase and earthed 2-wire alternating current system L-N (mains) up to a nominal voltage of 300 V AC. 					
Suppressor Coding E, PE	Type RC 3 ROperating voltage3x 575 V ACFrequency10 400 Hzmax. motor power4.0 kW					

Table 10 Motor data

Туре	Nominal voltage and power frequency U _N (V), f (Hz)	Nominal power P _N (kW)	Rated speed n _N (rpm)	Nominal current I _N (A)	Starting current ratio I _A / I _N	Power factor cos φ	max. hydraulic work vlue (pV _g) _{max} (bar cm ³)
HK 43	3x400/230 V 50 Hz	1.5	1395	3.1/5.4	4.2	0.91	900
HKF 43	3x460/265 V 60 Hz	1.8	1674	2.8/5.2	4	0.9	900
	3x500 V 50 Hz	1.5	1395	2.5	3.8	0.91	900
	3x600 V 60 Hz	1.8	1670	2.5	3.8	0.91	900
HK 44	3x400/230 V 50 Hz	2.2	1405	4.8/8.3	5.4	0.85	1250
HKF 44	3x460/265 V 60 Hz	2.6	1700	4.8/8.3	5	0.85	1250
	3x500 V 50 Hz	2.2	1405	3.9	4.8	0.85	1250
	3x600 V 60 Hz	2.6	1686	3.9	4.8	0.85	1250
	3x380 V 60 Hz	2.6	1710	4.9	5	0.84	1250
	3x200 V 50 Hz	2.2	1420	10.7	5.4	0.78	990
	3x220 V 60 Hz	2.6	1705	9.4	5.4	0.85	990
HK 48	3x400/230 V 50 Hz	3	1420	6.3/11.0	6.3	0.83	2600
HKF 48	3x460/265 V 60 Hz	3.6	1704	6.3/11.0	6.3	0.83	2600
	3x500 V 50 Hz	3	1420	5	6	0.83	2600
	3x600 V 60 Hz	3.6	1704	5	6	0.83	2600
	3x200 V 50 Hz	3	1420	12	6.5	0.83	2000
	3x220 V 60 Hz	3.6	1700	12.5	6.5	0.89	2000

1 NOTE

• The current consumption of the motor is dependent on the load. The nominal values only apply for one operating point. In modes S2 and S3 the motor may be used at up to about 1.8 times its nominal power. The heat development which is increased here is cooled in the no-load phases or during stoppage times.

The current and pump delivery flow can be estimated on the basis of the medium and maximum hydraulic work values (pVg)m and (pVg)max.

• The relevant load case is responsible for current consumption in dual-circuit pumps. The hydraulic work of the individual circuits is to be determined and added.

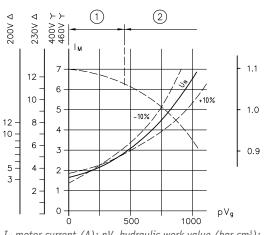
All connections pressurised:

One connection pressurised, the other one delivering in circulation mode:

 $\label{eq:calcorrelation} Dual-circuit \ pumps \qquad (pV_g)_{\ calc.} = p_1 \ V_{g1} + p_3 \ V_{g3}$

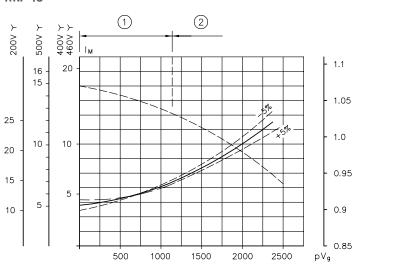
Dual-circuit pumps

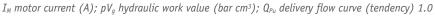
(pV_g) _{calc.} = $p_1 V_{g1} + \Delta p_L V_{g3}$


 Voltage tolerances: ± 10% (IEC 38), at 3x460/265 V 60 Hz ± 5% It can be operated at undervoltage; take note of information about performance restrictions in <u>Chapter 6.1, "Planning</u> <u>information"</u> ("Selection of a compact hydraulic power pack")!

For pump version Z, HH, HZ, H - H, H - Z, HH - Z, ZZ bzw. Z - Z the max. hydraulic work value (pVg)max is 10% lower.

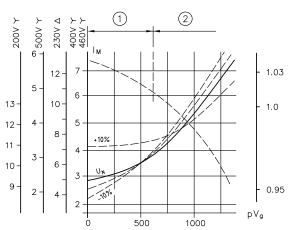
Current consumption


HK 43 HKF 43



 I_M motor current (A); pV_g hydraulic work value (bar cm³); Q_{Pu} delivery flow curve (tendency) 1.0

- 1 Area S1
- 2 Area S6

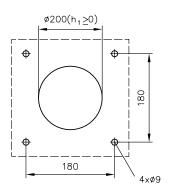

HK 48 HKF 48

- 1 Area S1
- 2 Area S6

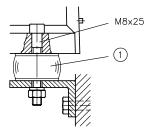
HK 44 HKF 44

 I_M motor current (A); pV_g hydraulic work value (bar cm³); Q_{Pu} delivery flow curve (tendency) 1.0

- 1 Area S1
- 2 Area S6


Temperature	switch	Technical data: Bimetallic-element switch					
Coding	T, 60, T55T65						
W, W60, WW60		Signal indication	80°C ± 5K (coding T, W) 60°C ± 5K (coding T60, W60) 55°C or 65°C (coding T55, T65)				
		Max. voltage		AC: 250 V 50/60 H: DC: 42 V 1.2 A	z 2.5 A		
		Nominal current (cos $\phi \sim 0.9$	5 / 0.6)	2.5 A / 1.6 A			
		Max. current at 24 V (cos ϕ =	1)	1.5 A			
		Electrical connection	See <u>Chapter 4.3, "Electric and hydraulic</u> connections"				
		Switching hysteresis		30 K \pm 15 K			
Level switch		Technical data:					
Coding D , S, A	A	Max. DC/AC switching capacit	ΣV	30 VA	D, A	S	
		Max. DC/AC current	5	0.5 A (cos $\phi = 0.95$		(N/0	
		Max. voltage		230 V AC/DC	contact)	contact)	
					~~~ <i>`</i>		
		Electrical connection		See <u>Chapter 4.3, "E</u> <u>connections"</u>	Electric and hyd	<u>draulic</u>	
Coding <b>D -D</b>		Max. DC/AC switching capacit	L.Y	3 VA	3-0-4		
		Max. DC/AC current		0.25 A	3 4 1 2		
		Max. voltage		42 V AC/DC	$\diamond$		
		Electrical connection		See <u>Chapter 4.3, "E</u> <u>connections"</u>	Electric and hyd	<u>draulic</u>	
		A protective circuit is to be i	mpleme	nted in the case of a	n inductive loa	ıd!	
<b>External fan</b> Coding <b>HKF</b>		Motor data					
		U _N	$P_{N}(W)$		Protection		
		3x400/230 V 50 Hz 丫△	110	2680 I	P 44		
		3x460/265 V 60 Hz 丫△	160	2950 I	P 44		
		Temperature range	-	-10°C +50°C			
		Electrical connection	in the terminal box or HARTING plug (see Chapter 4.3, "Electric and hydraulic connectio				

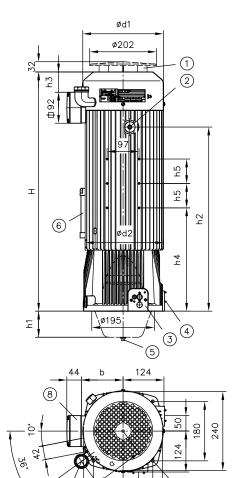



# 4 Dimensions

All dimensions in mm, subject to change.

## 4.1 Mounting hole pattern



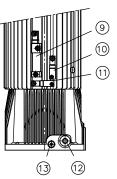

Recommended attachment



1 Damping element Ø40x30/M8 (65 Shore)



## 4.2 Basic pump




50

180 240

 $\overline{\mathcal{O}}$ 

4xø9



- 1 Fan cover, coding R
- 2 Drain port G 3/4, as standard
- 3 Main connection base
- 4 Second connection base
- 5 Drain screw G 1/8
- 6 Level switch, coding D, D-D, S
- 7 Oil filler G 1 1/4 series
- 8 Terminal box
- 9 Level switch, coding A
- 10 Temperature switch, coding W 60
- 11 Temperature switch, coding W
- 12 Connection for auxiliary tank G 3/4
- 13 Oil drain G 1/4

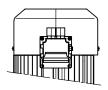
Pump version	h ₁
H, H-H, HH-H, Z (Bg 1: Z 2 Z 11.3)	
Z (Z 14.4 / Bg 2: 6.5 Z 16), IZ, ZZ, Z-Z, HZ (Z 2.0-11.3)	79
Z (Z 21, Z 24), HZ (Z 6.5-Z 24) H-Z, HH-Z	103

Basic type	Н	h ₂	h ₃	h ₄	h ₅	dı	d₂	а	b
НК 4	460		50			219	174	135	114
HK 4.8	580		50			219	174	135	114
HK 4.5	483	328	50			245	198	148	123
HK 4.9	603	448	50	337	74	245	198	148	123
HKF 4.5	513	328	80			245	198	148	123
HKF 4.9	633	448	80	337	74	245	198	148	123
HKF 4.2	833	648	80	337	74	245	198	148	123

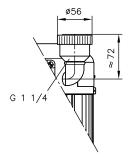


#### Additional option

#### HARTING plug


Coding P1

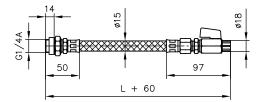
198 hЗ 1 88

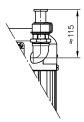

1

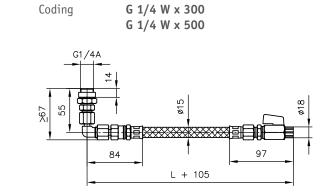
Filler reduction port M

Coding P2




Filling coupling MW





#### Oil drain hose

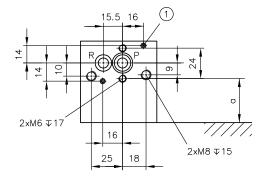
Coding G 1/4 x 500

G 1/4 x 300





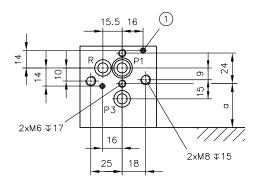



Suppressor coding P1E



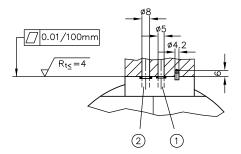
## 4.3 Electric and hydraulic connections

#### Hydraulic


Single-circuit pump (main connection pedestal) Dual-circuit pump with separate connection pedestal (main and second connection pedestal) Three-circuit pump (second connection pedestal)



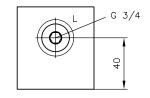
1 Centring pin


	a
HK 4, HKF 4 main connection pedestal	31
HK 4, HKF 4 second connection pedestal	25

Dual-circuit pump with shared connection pedestal (main connection pedestal) Three-circuit pump (main connection pedestal)



1 Centring pin


#### Hole for self-made connection block

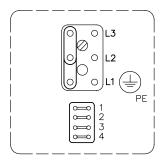


1 Sealing of connections:

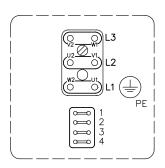
P and P1 = edge seal 6.07x1.68 NBR 90 Sh

2 Sealing of connections: P3 and R = 8x2 NBR 90 Sh Drain port (second connection pedestal), coding L



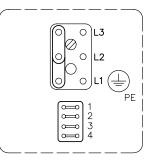



#### Electrical


#### Terminal box

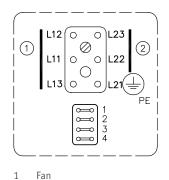
#### Туре НК

3-phase motor star pattern  $\curlyvee$ 



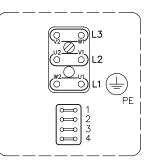

3-phase motor delta circuit riangle




#### Type HKF

3-phase motor star pattern  $\uparrow$ Terminal box position /1, /2, /3, /4 (see Table 1c)



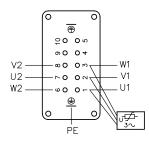

#### Type HKF

Star or delta circuit factory-set Terminal box position /5, /6, /7, /8 (see Table 1c)



2 Pump

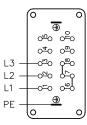
3-phase motor delta circuit riangle

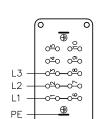





#### HARTING connector HAN 10 E Coding P1, P2

### Туре НК


Base (on the pump side)

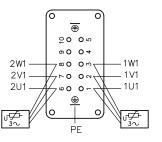


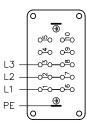

Type HKF

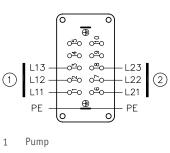
Base (on the pump side)

Socket (on the customer side) Star pattern  $\Upsilon$ Bridges are to be installed by the customer





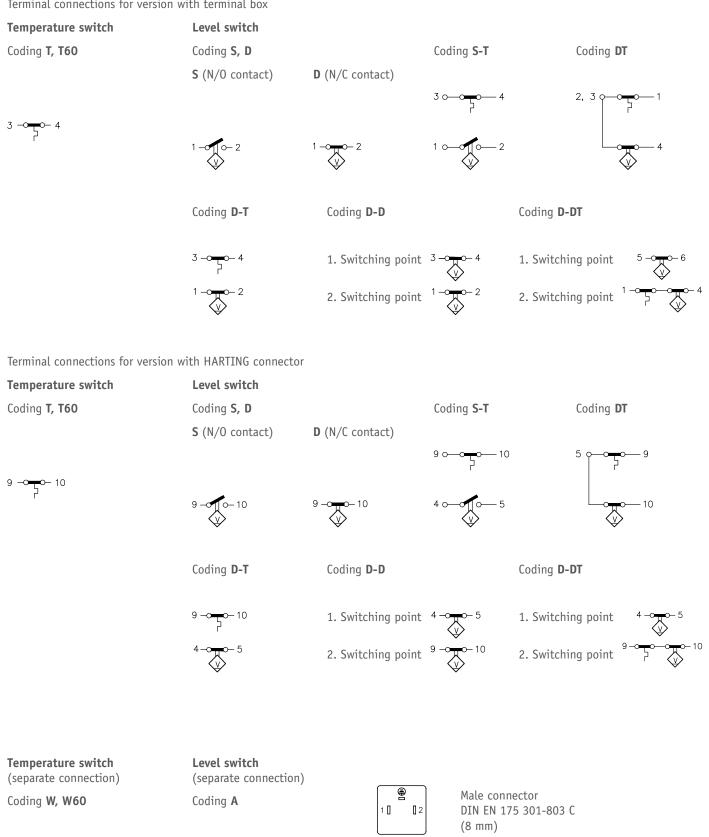


Delta circuit riangle


Socket (on the customer side)

Bridges are to be installed by the customer

Socket (on the customer side) Star or delta circuit factory-set Terminal box position /1, /2, /3, /4 (see Table 1c) Motor and fan together Socket (on the customer side) Star or delta circuit factory-set Terminal box position /1, /2, /3, /4 (see Table 1c) Motor and fan separately








2 Fan



#### Terminal connections for version with terminal box





# 5 Assembly, operation and maintenance recommendations

## 5.1 Intended use

These hydraulic components is intended exclusively for hydraulic applications (fluid technology).

The user must observe the safety measures and warnings in this documentation.

#### Essential requirements for the product to function correctly and safely:

- All information in this documentation must be observed. This applies in particular to all safety measures and warnings.
- The product must only be assembled and put into operation by qualified personnel.
- The product must only be operated within the specified technical parameters. The technical parameters are described in detail in this documentation.
- All components must be suitable for the operating conditions in the event of application in an assembly.
- The operating and maintenance manual of the components, assemblies and the specific complete system must also always be observed.

#### If the product can no longer be operated safely:

- 1. Remove the product from operation and mark it accordingly.
- $\checkmark$  It is then not permitted to continue using or operating the product.



## 5.2 Assembly information

The product must only be installed in the complete system with standard and compliant connection components (screw fittings, hoses, pipes, fixtures etc.).

The product must be shut down correctly prior to dismounting (in particular in combination with hydraulic accumulators).

#### **DANGER**

**Risk to life caused by sudden movement of the hydraulic drives when dismantled incorrectly!** Risk of serious injury or death.

- Depressurise the hydraulic system.
- Perform safety measures in preparation for maintenance.

#### **1** NOTE

The pump unit may only be installed and connected by a qualified specialist who is familiar with and adheres to general engineering principles and relevant applicable regulations and standards.

#### **1** NOTE

Within the meaning of the European Machinery Directive 2006/42/EC, Annex II, section 1 B: The incomplete machine is manufactured in accordance with the harmonised standards EN 982 and DIN 24 346. Commissioning is prohibited until it has been determined that the machine in which the incomplete machine is to be installed complies with the provisions of the EC directives.

The electrical connection is to be carried out by a qualified specialist who has received appropriate training.

The following directives and standards must be observed:

- VDI 3027 Commissioning and maintenance of oil-hydraulic systems
- DIN 24346 Hydraulic systems
- ISO 4413 Hydraulic fluid power general rules for application
- <u>D 5488/1</u> Oil recommendations
- <u>B 5488</u> General operating and maintenance manual

#### 5.2.1 Identification

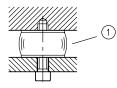
See type plate or option table



## 5.2.2 Setting up and attaching

• Set-up

#### **DANGER**


**Risk of injury due to hot compact hydraulic power pack and hot directional valve solenoids during operation.** Danger of burning.

- Do not touch the compact hydraulic power pack or directional valve solenoids during operation.
- Allow the compact hydraulic power pack and directional valve solenoids to cool down before any work.
- Wear protective gloves.

#### **1** NOTE

Ensure that fresh air can be drawn in and that warm air can escape. No changes of any kind (mechanical, welding or soldering work) may be made.

- Installation position vertical
- For dimensions, see Chapter 4.2, "Basic pump "
- For mounting hole pattern, see Chapter 4.1, "Mounting hole pattern"
- Recommended attachment



1 Damping element Ø40x30/M8 (65 Shore)

• Weight (for the basic power pack, without valve mounting and oil filling) For mass (weight) of connection blocks and valve banks, see the corresponding publications

Туре	H HH H-H HH-H	Z IZ	H-Z	ZZ Z-Z
HK 4.5, HKF 4.5	29.8 kg	26.3 kg	27.6 kg	29.3 kg
HK 4.9, HKF4.9	34.4 kg	30.9 kg	33.9 kg	32.2 kg
HK 48, HKF 482	39.2 kg	36.1 kg	40.0 kg	37.3 kg



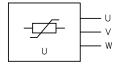
## 5.2.3 Electrical connection and selection of the motor protection circuit-breaker

- Connecting the electric drive (see Chapter 5.2.3, "Electrical connection and selection of the motor protection circuit-breaker")
- Connecting the float and level gauge (see <u>Chapter 5.2.3</u>, "Electrical connection and selection of the motor protection circuitbreaker")

#### **1** NOTE

The temperature switch responds at a oil temperature of approx. 95°C or 60°C.

#### **1** NOTE


If the amount of oil removed during each operating cycle causes the oil level to fall below the monitoring level of the level switch, then suitable electrical measures are to be taken in order to ignore the signal until the oil level rises above the monitoring level once again as a result of the oil flowing back in at the end of the operating cycle.

- Setting the motor protection circuit breaker
  - S1 operation (for pressures <= p₁)
     The motor protection circuit breaker is set to the max. current, but not higher than the nominal current l_N of the motor. The motor protection only extends to a possible mechanical motor blockage.
  - S 6 operation (for pressures <= p_{max})
     The motor protection circuit breaker is set to approx. (0.85 to 0.9) I_N (see motor current <u>Chapter 5.2.3, "Electrical connection</u> <u>and selection of the motor protection circuit-breaker</u>"). This ensures that the motor protection circuit breaker is not triggered prematurely during normal operation, but that the response of the pressure-limiting valve before switch-off is not so long that the max. permissible oil temperature is exceeded.
  - The settings of the motor protection circuit breaker must be checked during the test run. Temperature switches, level switches and pressure switches are further safety measures against malfunctions.

### **5.2.4 Information on ensuring EMC (electromagnetic compatibility)**

If compact hydraulic power packs (induction machine in accordance with EN 60034-1 Section 12.1.2.1) are connected to a system (for example, power supply in accordance with EN 60034-1 Section 6), they do not generate any impermissible fault signals (EN 60034-1 Section 19). Tests of immunity to interference to verify compliance with the standards EN 60034-1 Section 12.1.2.1 and VDE 0530-1 are not required. Any brief and potentially disruptive electromagnetic fields generated when switching the motor on and off can be weakened, for example, using suppressor type 23140, 3x400 V AC 4 kW 50-60 Hz, made by Murr-Elektronik, D-71570 Oppenweiler, Germany.

A suppressor can be integrated as an option directly on the terminal box or HARTING plug (coding E, P1E or P2E, see Table 1e)





## 5.3 Operating instructions

#### Note product configuration and pressure / flow rate

The statements and technical parameters in this documentation must be strictly observed. The instructions for the complete technical system must also always be followed.

#### **1** NOTE

- Read the documentation carefully before usage.
- The documentation must be accessible to the operating and maintenance staff at all times.
- Keep documentation up to date after every addition or update.

#### \Lambda CAUTION

**Risk of injury on overloading components due to incorrect pressure settings!** Risk of minor injury.

• Always monitor the pressure gauge when setting and changing the pressure.

#### Purity and filtering of the hydraulic fluid

Fine contamination can significantly impair the function of the hydraulic component. Contamination can cause irreparable damage.

#### Examples of fine contamination include:

- Metal chips
- Rubber particles from hoses and seals
- Dirt due to assembly and maintenance
- Mechanical debris
- Chemical ageing of the hydraulic fluid

#### **1** NOTE

Fresh hydraulic fluid from the drum does not always have the necessary degree of purity. When pouring in hydraulic fluid, filter it.

Pay attention to the cleanliness level of the hydraulic fluid to maintain faultless operation. (See also cleanliness level in <u>Chapter 3</u>, "Parameters")

Additionally applicable document: <u>D 5488/1</u> Oil recommendations



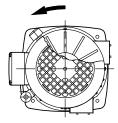
Always fill the hydraulic fluid via the system filter or a mobile filter station.

#### **Check for correct connection**

- Electrical: power supply, control
- Hydraulic: piping, hoses, cylinders, motors
- Mechanical: attachment to the machine, the frame and the base

#### **Motor protection**

The electric drive must be protected with a motor protection circuit.
 For the current setting, see <u>Chapter 5.2.3</u>, "Electrical connection and selection of the motor protection circuit-breaker"


#### Fill volume and usable volume

Coding	Fill volume	Usable volume	Basic type	
	V _{fill} (l)	V _{usable} (l)	НК	HKF
5	6.8/6.6	2.5/1.8	•	٠
9	10.0/9.0	5.7/5.5	•	٠
2	15.4	11.1		٠

#### rotation direction

- Radial piston pump any
- Gear pump anticlockwise
- Internal gear pump anticlockwise
- HKF-type anticlockwise

(Rotation direction is only marked by arrow on the fan housing. If there is no delivery flow in the 3-phase version, replace two of the three main conductors.)





#### Start and bleeding

- Directional value is in switching position in which the depressurised circulation of the pump is possible.
- 1. Switch the pump on and off several times so that the pump cylinders bleed automatically.
- If the controller is not designed for this,
- 2. a pipe screw connection with a short pipe bracket and a transparent plastic tube can be attached to connection P.
- 3. Insert the other end into the opening for the oil filler (unscrew the air filter).
- $\checkmark$  When the oil flow is free of bubbles, the pump has been bled.
- 4. Then move the consumer(s) back and forth several times until the air is largely removed there too and the movement is smooth.
- 5. If the consumers have bleed points, loosen the locking elements and only tighten them once bubble-free oil emerges.

#### **Directional valves**

- Any solenoid valves must be connected to the controller in accordance with the hydraulic schematic and function diagram.

#### Accumulator systems

 Accumulators should be filled using designated equipment in accordance with the pressure specifications of the hydraulic schematic. The relevant operating and maintenance manuals must be followed.

#### 🛕 CAUTION

**Risk of injury due to incorrect transportation.** Risk of minor injury.

- Comply with the regulations on transportation and safety.
- Wear protective equipment.



## **5.4 Maintenance information**

Conduct a visual inspection at regular intervals, but at least once per year, to check if the hydraulic connections are damaged. If external leakages are found, shut down and repair the system.

Clean the device surface of dust deposits and dirt at regular intervals, but at least once per year.

The compact hydraulic power packs together with the attached directional valves require minimal maintenance. It must be ensured that the oil level is regularly monitored.

An oil change must be performed once a year; any pressure filters and return line filters must be replaced.

## **1** NOTE

Before starting maintenance or repair work:

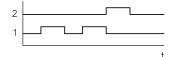
- Depressurise the system on the fluid side. This applies in particular for systems with hydraulic accumulators.
- Switch off or interrupt the power supply.

#### Repairs and spare parts

Repairs (replacement of wearing parts) can be carried out by trained specialists themselves. A spare parts list is available on request.
 The electric drive cannot be replaced.



## **6** Other information


## 6.1 Planning information

## 6.1.1 Selection advice

The procedure for the selection and design of compact hydraulic power packs with a valve attachment is described below. In order to find the ideal solution, several iterative steps generally have to be carried out.

#### a) Setting up a function diagram

The required or desired (hydraulically activated) functions form the basis for the function diagram.

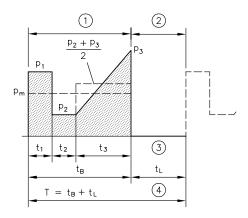


#### b) Definition of pressures and flow rates

- Dimensioning and selection of actuators on the basis of the reaction forces arising
- Calculation of the individual flow rates on the basis of the required velocity profiles

NOTE
 Take note of the reset times for spring-loaded clamping cylinders.

In the case of time-linked clamping devices, the release of spring-loaded clamping cylinders may often have a greater influence over the time interval than clamping. The return stroke times are determined exclusively by the forces of the reset springs. They drive the cylinder pistons ahead, against the flow resistance from directional valves and pipelines. This must be noted in the dimensions of pipelines or hose lines, as well as valves.


- Calculation of the individual operation pressures required
- Determination of the maximum (pump) delivery flow required Q (lpm)
- Determination of the (system) operating pressure p_{max} (bar)



- Q flow rate
- p pressure
- A Area
- v Velocity
- F Force

 $Q(I/\min) = 0.06 \cdot A(mm^2) \cdot v(\frac{m}{s})$ 

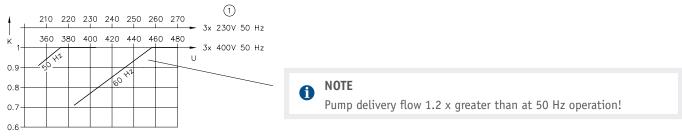
$$p\left(bar\right) = \frac{10 \cdot F(N)}{A(mm^2)}$$



- 1 Load time
- 2 No-load time
- 3 No load
- 4 One working cycle

#### c) Preparation of the hydraulic schematic

- Criteria:
  - single circuit system
  - Accumulator charging mode
  - Dual-circuit systems with two separately operating hydraulics circuits
  - Dual-circuit systems with a shared hydraulics circuit (for instance, in presses or hydraulic tools as high-pressure systems / low-pressure systems, in handling systems with velocity controlrapid feed/creep)
  - Use of an accumulator for the short-term support of the pump delivery flow


#### d) Setting up a time/load diagram on the basis of a function diagram

- Deriving the mode for the compact hydraulic power pack
  - Calculation of the relative ON-time %ED
  - S1 continuous operation (not suitable for compact hydraulic power packs only suitable with restrictions)
  - S2 short period operation
  - S3 standby mode
  - S6 continuous run with intermittent load



#### e) Selection of a compact hydraulic power pack

- Definition of the basic type on the basis of the power supply
  - Three-phase current
- Motor selection
  - Voltage tolerances:  $\pm$  10% (IEC 38), at 3x460/265 V 60 Hz  $\pm$  5%
  - A 3-phase motor 400 V 50 Hz can be used without restrictions in 460 V 60 Hz supply networks.
  - It can be operated at undervoltage. Bear in mind that this will involve performance restrictions.
    - $p_{max red} = p_{max} * k$
    - $p_{max}$  (bar) max. operating pressure in accordance with the selection tables
    - p_{max red} (bar) reduced max. available operating pressure
    - * k correction factor from the diagram



U supply voltage (V); K correction factor

- 1 Motor design
- Version with an encased stator To be used in hydraulic installations in which a water content in the oil of up to 0.3 % is expected.
- Electrical connection
  - Terminal box
  - HARTING plug
- Selection of the pump type (radial piston pump, gear pump, internal gear pump pump combination)
- Selection of the key figure for the pump delivery flow with due regard for the maximum permissible pressure and definition of the basic type with the motor size
- Estimation of the noise level from the diagrams in Chapter 3, "Parameters"



#### f) Calculation of the hydraulic work value

- Calculation of the average pressure
- Calculation of the average hydraulic work value (average pressure x output volume)
- Calculation of the maximum hydraulic work value (maximum operating pressure x output volume)

 $p_m$  (bar) = calculated average pressure per cycle during the load time

 $t_B = t_1 + t_2 + t_3 + \dots$ 

$$p_m = \frac{1}{t_B} \left( p_1 \cdot t_1 + p_2 \cdot t_2 + \frac{p_2 + p_3}{2} \cdot t_3 + \ldots \right)$$

 $p_m V_g$  = average hydraulic work value

V_g = geometric displacement volume in accordance with the tables <u>Chapter 2.2</u>, "Pump"

 $pV_{g max}$  (bar cm³) =  $p_{max} * V_{g}$ 

#### g) Determination of excess temperature

#### 🛕 CAUTION

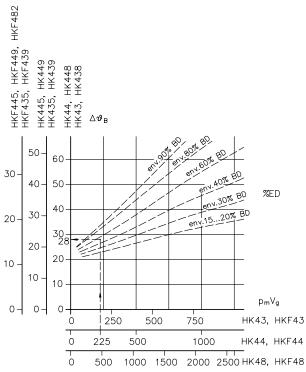
Take note of the max. permissible oil temperature of 80°C!

The steady-state temperature is reached after an operating time of about half an hour.

Influencing variables:

- Pressure run during the load phase (average pressure)
- Time share of the no-load phase
- Additional throttle losses over and above normal flow resistances (approx. 30%) from valves and lines are only to be taken into
  account if they take effect over a longer share of time within a working cycle (load phase). For instance, this includes work against
  the pressure-limiting valve (loss = 100%)

In order to conduct an approximate check on the steady-state temperature of the oil fill, you generally only require the two most important items of data, i.e. average hydraulic work of the pump  $(p_mV_g)$  and relative load duration per working cycle (%ED).


• In the case of a tank size with coding the steady-state temperature is approximately 15% lower.

 $\vartheta_{0il B} = \bigtriangleup \vartheta_{B} + \vartheta_{U}$ 

- $riangle \vartheta_{B}(K)$  Steady-state temperature, assessment from the diagrams opposite
- $\vartheta_{U}(K)$  Ambient temperature at the place of installation

 $\vartheta_{\text{Oil B}}$  (°C) - Steady-state temperature of the oil fill







Relative duty cycle % 
$$ED = \frac{t_B}{t_B + t_L} \cdot 100$$

#### h) Determination of the max. current consumption

#### See diagrams Chapter 3.3, "Electrical"

zur for the settings of the motor protection circuit breaker, see <u>Chapter 5.2.3</u>, "<u>Electrical connection and selection of the motor</u> <u>protection circuit-breaker</u>"

#### i) Additional drain return port

For larger, hot operating leakage oil return flows, for example chucks on lathes. The leakage oil return flow is guided so that its entrained heat loss is dissipated by the fan cooling.



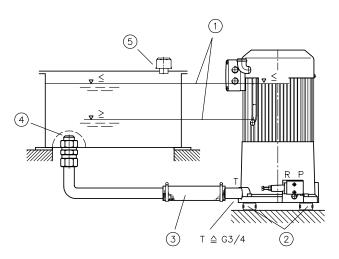
#### j) After-run

If the compact hydraulic power pack is wired directly to the hydraulic cylinder, e.g. in the circuit for clamping devices (B-type connection blocks), and if a pressure switch causes it to cut out once the set pressure has been reached, a certain increase in pressure still takes place as a result of the after-run action of the pump motor. The level of this additional rise in pressure is dependent on the pressure setting, on the consumer volume and on the pump delivery flow. If you wish to prevent these pressure rises, the setting for the pressure-limiting valve has to be adjusted in line with the switch-off point on the pressure switch. As a result, the subsequent delivery from the pump is discharged via the pressure-limiting valve.

The adjustment is to be carried out as follows:

- 1 Open the pressure-limiting valve fully.
- 2 Set the pressure switch to the highest value (by turning the setting screw clockwise as far as it will go).
- 3 Switch on the pump (with a consumer and pressure gauge connected) and turn up the pressure-limiting valve until the pressure gauge shows the required end operating pressure.
- 4 Turn the pressure switch in the opposite direction until the pump is switched off at the pressure setting (see <u>Chapter 3</u>, "Parameters").
- 5 Locking the pressure-limiting valve and the pressure switch.

The rise in pressure due to the after-run can also be avoided by using an accumulator or additional volume in the consumer line. If the compact hydraulic power pack is used to full capacity, i.e. the pressure setting is close to the maximum permissible pressure according to the selection tables in <u>Chapter 2.1, "Motor and container"</u> and <u>Chapter 2.2, "Pump"</u>, practically no after-run occurs because the pump comes to a stop almost as soon as it is switched off.




#### k) Additional container

If necessary, an additional reservoir can be connected to port T to increase the usable volume. This container is must be supplied. It is only used to compensate for volume changes. The return line from the consumer circuit must always be fed into connection R of the HK pump!

The connection line must be dimensioned sufficiently. Connection, for example, with pipe screw connections light series for pipe 22x1.5 with hose piece for noise and vibration decoupling or with bare hose line.

#### **1** NOTE Only suitable for pump delivery flows of approx. 12 l/min.



- 1 Same max. filling and removal height
- 2 Rubber-metal attachment
- 3 Hose connector
- 4 Strainer
- 5 Air filter



#### l) Connection block and valve mounting

A connection block is necessary to make a compact hydraulic power pack ready for a hydraulic connection.

Туре	Description	Publication
A, AL, AM, AK, AS, AV, AP	For single-circuit pumps with a pressure-limiting valve and the possibility of direct mounting of directional valve banks	<u>D 6905 A/1</u>
	Optional:	
	<ul> <li>Pressure filter or return line filter</li> <li>Idle circulation valve</li> </ul>	
	<ul> <li>Accumulator charging valve</li> </ul>	
	<ul> <li>Proportional pressure-limiting valve</li> </ul>	
AN, AL, NA, C30, SS, VV	For dual-circuit pumps with a pressure-limiting valve and the partial possibility of direct mounting of directional valve banks	<u>D 6905 A/1</u>
	Optional:	
	- Pressure filter or return line filter	
	<ul> <li>Accumulator charging valve</li> <li>Two-stage valve</li> </ul>	
	<ul> <li>Idle circulation valve</li> </ul>	
AX	For single-circuit pumps with a pressure-limiting valve with unit approval and the possibility of direct mounting of directional valve banks (for use in accumulator systems)	<u>D 6905 TÜV</u>
	Optional:	
	- Pressure filter or return line filter	
_	- Idle circulation valve	
В	For single-circuit pumps for the activation of single-acting cylinders with a pressure-limiting valve and drain valve	<u>D 6905 B</u>
	Optional:	
	- Throttle valve	
С	For single-circuit pumps with connections P and R for direct piping	<u>D 6905 C</u>

## **1** NOTE

When setting the pressure-limiting valve on the connection block, take note of the maximum permissible pressure of the pump!



The direct mounting of valve banks with directional valves on A-type connection blocks enables a compact hydraulic unit to be assembled without the need for additional piping.

Туре	Description	p _{max} (bar)	Publication
VB	Valve bank (directional seated valve)	700	<u>D 7302</u>
BWN, BWH	Valve bank (directional seated valve)	450	<u>D 7470 B/1</u>
SWR, SWS	Valve bank (directional spool valve)	315	<u>D 7451, D 7951</u>
ВА	Valve bank for the combination of different directional valves with connection pattern NG 6 in accordance with DIN 24 340-A6	400	<u>D 7788</u>
BVH	Valve bank (directional seated valve)	400	<u>D 7788 BV</u>
NBVP	Directional seated valve	400	<u>D 7765 N</u>
NSWP	Directional spool valve	315	<u>D 7451 N</u>
NSMD	Clamping module (Directional spool valve with a pressure reducing valve and acknowl- edge function)	315	<u>D 7787</u>
NZP	Intermediate plates with connection pattern NG 6 in accordance with DIN 24 340-A6	400	<u>D 7788 Z</u>



## **Further information**

#### **Additional versions**

- Compact hydraulic power pack type HKF 4 with frequency converter: D 7600-4 FU
- Compact hydraulic power pack type HK 3: D 7600-3
- Compact hydraulic power pack type HKL and HKLW: D 7600-3L
- Compact hydraulic power pack type KA and KAW size 2: D 8010
- Compact hydraulic power pack type KA and KAW size 4: D 8010-4
- Compact hydraulic power pack type HC and HCW: D 7900
- Compact hydraulic power pack type MPN and MPNW: D 7207
- Direct current compact hydraulic power pack type NPC: D 7940
- Connection blocks type A for hydraulic power packs: D 6905 A/1
- Connection block type AX, with unit approval: D 6905 TUV
- Connection blocks type B for hydraulic power packs: D 6905 B
- Connection block type C 5 and C 6: D 6905 C
- Valve bank (directional seated valve) type VB: D 7302
- Valve bank (directional seated valve) type BWN and BWH: D 7470 B/1
- Valve bank (nominal size 6) type BA: D 7788
- Valve bank (directional seated valve) type BVH: D 7788 BV
- Directional seated valve type NBVP 16: D 7765 N
- Directional spool valve type NSWP 2: D 7451 N
- Clamping module type NSMD: D 7787
- Intermediate plate type NZP: D 7788 Z
- Fitting type X 84: D 7077
- Diaphragm accumulator type AC: D 7969
- Miniature hydraulic accumulators, type AC: D 7571

#### HAWE Hydraulik SE

Einsteinring 17 | 85609 Aschheim/Munich | Postfach 11 55 | 85605 Aschheim | Germany Tel +49 89 379100-1000 | Fax +49 89 379100-91000 | info@hawe.de | www.hawe.com